题目:Dynamics of Nonlocal Dispersal SIS Epidemic Models
内容简介:In this talk, I will introduce a nonlocal dispersal susceptible-infected-susceptible (SIS) epidemic model with Neumann boundary condition, where the spatial movement of individuals is described by a nonlocal (convolution) diffusion operator, the transmission rate and recovery rate are spatially heterogeneous, and the total population number is constant. We first define the basic reproduction number $R_0$ and discuss the existence, uniqueness and stability of steady states of the nonlocal dispersal SIS epidemic model in terms of $R_0$. Then we consider the impacts of the large and small diffusion rates of the susceptible and infectious populations on the persistence and extinction of the disease. The obtained results indicate that the nonlocal movement of the susceptible or infectious individuals will enhance the persistence of the infectious disease. In particular, our analytical results suggest that the spatial heterogeneity tends to boost the spread of the infectious disease.
报告人:杨飞英
报告人简介:杨飞英,兰州大学博士毕业,现为兰州大学数学与统计学院副教授,主要从事微分方程与动力系统方面的研究,在非线性演化方程的时空动力学方面取得了一些突出成果,先后在JMPA, JDE, JDDE, DCDS,PRSE-A等国际权威期刊发表30余篇论文。
时间:2025年6月24日 (周二) 下午15:00 开始
地点:腾讯会议:436-389-512
热烈欢迎广大师生参加!
信息科学技术学院
2025年6月23日