数学系学术讲座(六十一、六十二)

发布时间: 2024-11-26 来源: 信息科学技术学院

题目一:采样理论与相位恢复

内容简介:采样定理是信号分析中的一个基本结果。我们简要介绍频谱有限函数空间和平移不变函数空间上的采样理论,以及采样理论在小波框架的构造和相位恢复中的应用。

报告人:孙文昌

报告人简介:南开大学数学科学学院教授,主要研究小波分析与调和分析,多次主持国家自然科学基金和教育部博士学科点基金项目,在Advances in Mathematics, Mathematische Annalen, Journal of Functional Analysis, Applied and Computational Harmonic Analysis, Mathematics of Computation, IEEE Transactions on Information Theory, Optics CommunicationsSCI期刊发表90多篇论文。孙文昌曾获得国家杰出青年科学基金(2015),国务院政府特殊津贴(2010年度),天津市自然科学一等奖(第一完成人,2008年),天津青年科技奖(2008年),微软青年教授奖(2006年),教育部新世纪优秀人才支持计划(2004年)。


题目Unbiased Markov chain quasi-Monte Carlo for Gibbs samplers

内容简介:In statistical analysis, Monte Carlo (MC) stands as a classical numerical integration method. When encountering challenging sample problem, Markov chain Monte Carlo (MCMC) is a commonly employed method. However, the MCMC estimator is biased after a fixed number of iterations. Unbiased MCMC, an advancement achieved through coupling techniques, addresses this bias issue in MCMC. It allows us to run many short chains in parallel. Quasi-Monte Carlo (QMC), known for its high order of convergence, is an alternative of MC. By incorporating the idea of QMC into MCMC, Markov chain quasi-Monte Carlo (MCQMC) effectively reduces the variance of MCMC, especially in Gibbs samplers. This work presents a novel approach that integrates unbiased MCMC with MCQMC, called as an unbiased MCQMC method. This method renders unbiased estimators while improving the rate of convergence significantly. Numerical experiments demonstrate that for Gibbs sampling, unbiased MCQMC with a sample size of N yields a faster root mean square error (RMSE) rate than the  O(N^{-1/2}) rate of unbiased MCMC, toward an RMSE rate of O(N^{-1}) for low-dimensional problems. Surprisingly, in a challenging problem of 1049-dimensional P\'olya Gamma Gibbs sampler, the RMSE can still be reduced by several times for moderate sample sizes. In the setting of parallelization, unbiased MCQMC also performs better than unbiased MCMC, even running with short chains. This is joint work with Jiarui Du.

报告人:何志坚

报告人简介:华南理工大学数学学院教授、博导、副院长,广东省计算数学学会副理事长,广东省现场统计学会理事。于20157月在清华大学获得理学博士学位。研究兴趣为随机计算方法与不确定性量化,特别是拟蒙特卡罗方法的理论和应用研究。目前发表SCI论文20余篇,其中11篇发表在统计学和计算科学的国际著名刊物Journal of the Royal Statistical Society: Series BSIAM Journal on Numerical AnalysisSIAM Journal on Scientific ComputingMathematics of Computation。博士论文获得新世界数学奖(ICCM毕业论文奖)银奖。主持一项国家级青年人才计划项目、两项国家自然科学基金项目以及四项省部级项目。


时  间:2024122日(周一)下午1400开始

地  点:腾讯会议:399-983-478


热烈欢迎广大师生参加!



信息科学技术学院

20241125