题 目:Sparse Phase Retrieval under Fourier-based Measurement
内容简介:We consider the sparse phase retrieval problem, that is, recovering an unknown s-sparse signal from the intensity-only measurements. Specically, we focus on the problem of recovering x from the observations that are convoluted with some specfic kernel, it can also be considered as masked Fourier measurements. This model is motivated by real-world applications in optics and communications. If the convolutional kernel is generated by a random Gaussian vector and the number of subsampled measurements is on the order of spolylogn, one can recover x up to a global phase. Here we discuss the behavior of sparse phase retrieval under more realistic measurements, as opposed to independent Gaussian measurements.
报告人:夏羽
报告人简介:杭州师范大学数学学院副教授,毕业于浙江大学数学系 (导师:李松教授)。主要从事信号图像处理中的数学理论和算法研究. 现阶段在应用数学及数学与信息交叉领域发表一系列学术论文,包括 Applied and Computational Harmonic Analysis, Inverse Problems, IEEE Transactions on Information Theory, IEEE Transactions on Signal Processing等。主持国家自然科学基金项目两项。
时 间:2024年11月17日(周日)上午9:30开始
地 点:腾讯会议:554-725-402
热烈欢迎广大师生参加!
信息科学技术学院
2024年11月14日