数学系学术讲座(三十二)

发布时间: 2024-07-01 来源: 信息科学技术学院

  目:Spatial Dynamics of Species with Annually Synchronized Emergence of Adults

内容简介:In this talk, I will report our research on the spatial dynamics of species growth with annually synchronous emergence of adults by formulating an impulsive reaction-diffusion model. With the aid of the discrete-time semiflow generated by the one-year solution map, we establish the existence of the spreading speed and traveling waves for the model on an unbounded spatial domain. It turns out that the spreading speed coincides with the minimal speed of traveling waves, regardless of the monotonicity of the birth rate function. We also investigate the model on a bounded domain with a lethal exterior to determine the critical domain size to reserve species persistence. Numerical simulations are illustrated to confirm the analytical results and to explore the effects of the emergence maturation delay on the spatial dynamics of the population distribution. In particular, the relationship between the spreading speed and the emergence maturation delay is found to be counterintuitively variable.

报告人:赵晓强

报告人简介:加拿大纽芬兰纪念大学数学与统计系教授,该校University Research Professorship荣誉获得者。赵教授先后于1983年和1986年在西北大学数学系获学士和硕士学位,1990年在中国科学院应用数学研究所获博士学位。赵教授长期从事动力系统、微分方程和生物数学相关领域的研究,在单调动力学、一致持久性、行波解和渐近传播速度、主特征值、基本再生数的理论及应用等方面的系列工作受到同行的广泛关注和引用。迄今为止,他已在“Comm. Pure Appl. Math. J. Eur. Math. Soc. J. reine angew. Math. J. Math. Pures Appl.Trans. Amer. Math. Soc.SIAM J. Math. Anal.” 等国际知名期刊上发表论文180余篇,并在Springer出版专著“Dynamical Systemsin Population Biology”。赵教授个人主页:https://www.math.mun.ca/~zhao/

  间:202471日(周一)下午1630开始

  点:南海楼224数学系会议室

 

热烈欢迎广大师生参加!

 

 

信息科学技术学院

202471