题 目:Stable image restoration by TV type methods
内容简介:Some new TV type minimization models are introduced to investigate robust image recovery from a certain number of noisy measurements by the proposed TV type minimization models. Error bounds of robust image recovery from compressed measurements via the proposed minimization models are established, and the RIP based condition is improved compared with total variation (TV) minimization. Numerical results of image reconstruction demonstrate our theoretical results and illustrate the efficiency of the proposed TV type minimization models among state of-the-art methods.
报告人:谌稳固
报告人简介:北京应用物理与计算数学研究所研究员,博士生导师,主要从事调和分析、压缩感知、机器学习、大数据分析的理论及应用研究,在IEEE Transactions on Information Theory, Applied and Computational Harmonic Analysis,Inverse Problems, SIAM Journal on Imaging Sciences, Journal of Machine Learning等学术期刊发表科研论文70余篇。
时 间:2023年11月17日(周五)上午9:00 开始
地 点:腾讯会议:184-215-195
热烈欢迎广大师生参加!
信息科学技术学院/网络空间安全学院
2023年11月14日