题 目:The number of limit cycles of Josephson equation
内容简介:In this talk, we will study the Josephson equations,which can be transformed the following Lienard systems on the cylinder: x’(t)=y, y’(t)=-(sin x-a)-(b+c cos x)y. We concern the non-contractible limit cycles, which are the isolated 2\pi-periodic solutions y=y(x). This problem is equivalent to study the non-zero limit cycles of the following Abel equations y’(x)=(b+cos x)y^2-(sin x-a) y^3. By the theory of rotation vectors and studying the multiplicity of limit cycles, we will show that at most two non-zero limit cycles can appear. Our work can be also viewed as a step to solve the following open problem: Open problem: y’(x)=(a_0+a_1 sin x+a_2 cos x)y^3+(b_0+b_1 sin x+b_2 cos x)y^2 have at most three limit cycles (The trivial limit cycle y=0 is included). This is a joint work with Xiangqin Yu and Hebai Chen.
报告人:刘长剑 教授
报告人简介:中山大学数学学院(珠海)教授。本、硕、博均毕业于北京大学,并获北京大学-里尔第一大学联合培养博士学位。主要从事常微分方程与动力系统方面的研究,在Trans. AMS, JDE, Nonlinearity 等杂志发表论文40余篇,主持多项国家自然科学基金面上项目。
时 间:2023年5月4日(周四)上午 10:00 始
地 点:暨南大学番禺校区 教学楼 N421
热烈欢迎广大师生参加!
信息科学技术学院
2023年4月28日