题 目:Riemann-Hilbert problems for null-solutions to iterated generalized Cauchy-Riemann equation on upper half ball
内容简介:We study Riemann-Hilbert boundary value problems with variable coefficients for axially symmetric null-solutions to iterated generalized Cauchy-Riemann equation, defined over upper half unit ball centred at the origin in four dimensional Euclidean space. First, we prove an Almansi-type decomposition theorem for axially symmetric null-solutions to iterated generalized Cauchy-Riemann equation. Then, we give integral representation solutions to Riemann-Hilbert problems for axially symmetric null-solutions to iterated generalized Cauchy-Riemann equation over upper half unit ball centred at the origin in four-dimensional Euclidean space. In particular, we derive solutions to Schwarz problem for axially symmetric null-solutions to iterated generalized Cauchy-Riemann equation over upper half unit ball centred at the origin in four-dimensional Euclidean space. Finally, we further extend the results in previous section to axially symmetric null-solutions to iterated generalized Cauchy-Riemann oprator over upper half unit ball centred at the origin in four-dimensional Euclidean space.
报告人:中南大学 贺福利 副教授
报告人简介:硕士研究生导师,美国数学评论评论员。主要从事复分析,Clifford分析,Riemann Hilbert问题及其相关,数学建模与应用等方向的研究,在《Computers & Mathematics with Applications 》、《Complex Variables and Elliptic Equations》、《Advances in Applied Clifford Algebras》、《Complex Analysis and Operator Theory 》、《Integral Transforms and Special Functions》、《Acta Mathematica Scientia》、《Boundary Value Problems 》、《Symmetry》、《数学学报》以及《数学年刊》等国内外刊物上发表论文20余篇。
时 间:2019年7月6日(周六)下午4:00始
地 点:南海楼224室
热烈欢迎广大师生参加!
信息科学技术学院
2019年7月3日