网络空间安全学院学术讲座(一、二)

发布时间: 2019-04-26 来源: 信息科学技术学院

题目一:Revival Oscillation in Coupled Nonlinear Oscillators

内容简介:Oscillatory behavior is essential for proper functioning of various physical and biological processes in a wide variety of natural systems,which are often composed of an ensemble of interacting oscillatory units. When the interaction occurs through a diffusive manner, the macroscopic oscillations can be suppressed by manifesting two structurally distinct oscillation quenching phenomena: amplitude death (AD) and oscillation death (OD).  The phenomena of AD and OD can be responsible for a loss of dynamic activity, which may cause a large degree of degradation in the functional performance of many real-world systems. The topic of revoking AD and OD to efficiently restore rhythmicity with a general technique is of practical importance, which is an open and challenging issue in nonlinear dynamics.  In this talk, we will discuss two different schemes to revoke both AD and OD in diffusively coupled nonlinear oscillators that we have proposed in [Phys. Rev. Lett. 111, 014101 (2013)] and [Phys. Rev. E 95, 062206 (2017)].

报告人:华南师范大学邹为副教授

报告人简介:广东省青年珠江学者,2010年获得中科院武汉物理与数学研究所应用数学博士学位,博士论文获2011年度中国科学院百篇优秀博士论文奖,2011年10月至2013年9月获得洪堡奖学金在德国柏林洪堡大学从事博士后研究工作,2016年2月至2018年2月在香港浸会大学从事香江学者博士后研究工作,长期从事复杂系统、非线性科学理论研究,在耦合非线性系统的群体动力学行为研究问题上取得系统成果。目前已在非线性动力学主流期刊发表SCI论文36篇, H指数15,SCI总引用800余次。 以第一作者身份发表了20多篇学术论文,包括1篇Nature Communications及1篇Physical Review Letters等。主持并完成国家自然科学基金2项。

 

题目二:Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in temporal direction

内容简介:A Newton linearized Galerkin finite element method is proposed to solve nonlinear time fractional parabolic problems with non-smooth solutions. Iterative processes or corrected schemes become dispensable by the use of the Newton linearized method and graded meshes in the temporal direction. The optimal error estimate in the $L^2$-norm is obtained without any time step restrictions dependent on the spatial mesh size. Such unconditional convergence results are proved by including the initial time singularity into concern, while previous unconditional convergent results always require continuity and boundedness of the temporal derivative of the exact solution. Numerical experiments are conducted to confirm the theoretical results.

报告人:华中科技大学李东方教授

报告人简介:博导,中国系统仿真学会仿真算法专业委员会委员。主要从事微分方程数值解、系统仿真和信号处理等方面的研究。曾先后赴加拿大McGill大学,香港城市大学从事博士后研究。截至目前在《SIAM. J. Numer. Anal.》,《SIAM. J. Sci. Comput.》、《J. Comp. Phys.》、《Appl. Comp. Harm. Appl.》等多个国际著名计算学科SCI期刊上发表第一或者通讯作者论文40余篇。主持国家自然科学基金面上项目、青年基金各一项,博士后基金一项,参与多项国家自然科学基金。先后获得华中科技大学学术新人奖、香江学者奖等。

 

时  间:2019年5月1日(周三)上午9:00始

地  点:南海楼124室

 

 

热烈欢迎广大师生参加!

 

 

网络空间安全学院

2019年4月26日