题 目:Variation of Extremal Length Functions on Teichmüller Space
内容简介:Extremal length is an important conformal invariant on Riemann surface. It is closely related to the geometry of Teichmüller metric on Teichmüller space. By identifying extremal length functions with energy of harmonic maps from Riemann surfaces to R-trees, we study the second variation of extremal length functions along Weil-Petersson geodesics. We show that the extremal length of any measured foliation is a plurisubharmonic function on Teichmüller space. This is joint work with Weixu Su.
报告人:中山大学 刘立新 教授
报告人简介:中山大学数学学院教授,博士生导师, 主要从事Teichmuller理论及其相关学科的研究, 主要涉及Teichmuller空间、黎曼面、拟共形映射、复动力系统、几何拓扑、双曲几何、极小曲面、调和映射、低维拓扑等。已发表论文30余篇,其中包括Transactions of the American Mathematical Society、International Mathematics Research Notices、Communications in Analysis and Geometry等期刊。
时 间:2018年10月18日(周四)上午8:30始
地 点:南海楼224室
热烈欢迎广大师生参加!
信息科学技术学院/网络空间安全学院
2018年10月15日