题 目:Some properties of Ricci flow with unbounded curvature and their applications
内容简介:In this talk, we will give a brief introduction to W.-X. Shi's programme for Yau's uniformization conjecture. In 1970s, S.-T. Yau conjectured that any complex n-dimensional complete noncompact Kaehler manifold with positive bisectional curvature must be biholomorphic to complex n-dimensional Euclidean space. Shi used Hamilton's Ricci flow to study this conjecture. Up to 2006, Chau-Tam proved this conjecture with two more assumptions: the Kaehler manifold has bounded curvature and maximum volume growth. We hope to remove the assumption of bounded curvature. This leads to my work joint with Professor Luen-Fai Tam.
报告人:清华大学 黄少创 博士
时 间:2016年12月28日(周三)上午10:00始
地 点:南海楼三楼数学系师生研讨室
热烈欢迎广大师生参加!
信息科学技术学院/网络空间安全学院
2016年12月26日