2016年12月21-23日,中国科学院院士田刚访问暨南大学信息科学技术学院,并为广大师生做了题为《欧拉公式与计数几何》的演讲。讲座由暨南大学张荣华副校长主持,信息科学技术学院翁建院长、赵逸才副院长、数学系张传林主任、范旭乾副主任等数学系师生参加讲座。其他院系爱好数学的师生也前来听讲,座无虚席,许多同学站着听完了讲座。
古希腊数学家欧几里得所著的《几何原本》,是欧氏几何的奠基之作,在西方是仅次于《圣经》而流传最广的书籍。《几何原本》中最亮的结果有:正多面体只有五种,即正三角形做面的正四面体、正八面体、正二十面体,用正方形做面的正六面体,用正五边形做面的正十二面体。田刚院士以此为出发点,介绍了这一结果的现代证明工具——欧拉公式。并用通俗易懂的语言,阐述了如何把凸多面体的欧拉公式推广到任意拓扑空间,从而引出了光滑流形上的欧拉示性数的概念。进一步,用向量场的零点来定义流形的欧拉示性数,并给出了著名的 Hopf 定理。欧拉示性数是数学中一个特别重要的不变量,它在指标理论,高斯-博内-陈定理等数学问题中都有很重要的应用。
田刚院士讲座的另一个内容是计数几何。这也是起源于公元前两百多年的数学问题,它研究几何方程的解的个数,是代数几何的一个重要分支。90年代以来,受物理中场论研究的启发,计数几何的研究更加系统化,与数学其他分支,如表示论、微分方程等紧密相连。量子同调环就是一例,它对古典的计数几何给出了更深层次的、统一的理论总结。Apollonius问题是计数几何最早例子之一,由它引出的n(d)---过一般位置的3d-1个点的d次有理曲线的条数,实际上是欧拉示性数在无穷维空间上的推广。但是它的具体计算、渐近公式,甚至几何意义的深入探索却极为困难。
田刚院士与阮勇斌教授合作在1993年给出了n(d)的严格定义,并证明它们满足复投影空间上量子同调环的可结合律,进而可以得出n(d)的递推公式。实际上,量子上同调只是现在称为GW理论在亏格为零的情形。GW理论对应理论物理中的拓扑场论,其数学理论由田刚院士和阮勇斌教授最先在半单辛流形上建立。之后由田刚院士和李骏教授、Fukaya-Ono教授等推广到一般辛流形。GW理论不仅推进了计数几何的高度发展,而且与数学很多分支,如无穷维代数表示和可积系统,紧密相关,也为镜对称等重要问题提供了数学基础。
田刚院士的讲座风趣幽默,深入浅出,报告中包含很多有趣的动态图像,引起了参与师生的广泛兴趣,使大家受益匪浅。在讲座最后,田刚院士回答了与会者提出的每个问题!
数学系
2016年12月26日